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Abstract

I calculate the first correction to the thermal distribution function of an expanding gas due to

shear viscosity. With this modified distribution function I estimate viscous corrections to spectra,

elliptic flow, and HBT radii in hydrodynamic simulations of heavy ion collisions using the blast

wave model. For reasonable values of the shear viscosity, viscous corrections become of order one

when the transverse momentum of the particle is larger than 1.7 GeV. This places a bound on

the pT range accessible to hydrodynamics for this observable. Shear corrections to elliptic flow

cause v2(pT ) to veer below the ideal results for pT ≈ 0.9 GeV. Shear corrections to the longitudinal

HBT radius R2
L are large and negative. The reduction of R2

L can be traced to the reduction of

the longitudinal pressure. Viscous corrections cause the longitudinal radius to deviate from the

1√
mT

scaling which is observed in the data and which is predicted by ideal hydrodynamics. The

correction to the sideward radius R2
S is small. The correction to the outward radius R2

O is also

negative and tends to make RO/RS ≈ 1.
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I. INTRODUCTION

One of the most exciting results of the Relativistic Heavy Ion Collider (RHIC) is the

observation of collective motion. In particular, the experiments have measured a large

elliptic flow in non-central collisions [1, 2, 3, 4, 5]. Elliptic flow is quantified with the second

harmonic of the azimuthal distribution of produced particles

v2(pT ) = 〈cos(2φ)〉pT
≡
∫ π

−π
dφ cos(2φ) d3N

dy pt dpt dφ
∫ π

−π
dφ d3N

dy pt dpt dφ

, (1)

where φ is the measured relative to the reaction plane. v2(pT ) rises strongly as a function

of transverse momentum up to pT ≈ 1.5 GeV. One interpretation of the observed flow is

that hydrodynamic pressure is built up from the rescattering of produced secondaries and

pressure gradients subsequently drive collective motion. A strong hydrodynamic response

is possible if the sound attenuation length Γs ≡ 4
3

η
e+p

, is significantly smaller than the

expansion rate, ∼ τ . (In the formula Γs ≡ 4
3

η
e+p

, η is the shear viscosity, e the energy

density and p the pressure.) Estimates based upon perturbation theory give Γs ∼ τ and

indeed thirty times the perturbative 2-2 cross sections are needed to obtain the observed

elliptic flow [6]. However, these perturbative estimates are uncertain. In an example of a

strongly coupled gauge theory where calculations are possible (N=4 SUSY YM), Γs is in

fact approximately 2-4 times smaller compared to perturbation theory [7] (see also Section

II).

Ideal hydrodynamics (Γs = 0) has been used to simulate heavy ion reactions and readily

reproduced the observed elliptic flow and its dependence on centrality, mass, beam energy

and transverse momentum [8, 9]. However ideal hydrodynamics failed in several respects.

First, above pT ≈ 1.5 GeV the observed elliptic flow does not increase further as predicted

by hydrodynamics. Additionally, the single particle spectra deviate from hydrodynamic

predictions above pT ≈ 1.5 GeV. Second, the observed HBT radii are significantly smaller

than predicted by ideal hydrodynamics [10, 11, 12]. In particular, the longitudinal radius RL

is 50% smaller than the ideal hydrodynamic result. Further, the ratio between the outward

(RO) and sideward (RS) radii is observed to be approximately one while ideal hydrodynamics

predicts RO/RS ≈ 1.3 [10].

The domain of applicability of hydrodynamics can be answered quantitatively by calcu-

lating the first viscous correction to ideal hydrodynamic results. The effect of viscosity is

2



twofold. First, viscosity changes the solution to the equations of motion. Second, viscosity

changes the local thermal distribution function. This effect was first investigated in heavy

ion physics by Dumitru [13]. The purpose of this work is to consider the effect of a modi-

fied thermal distribution function on spectra, elliptic flow, and HBT radii. Thus this work

delineates the boundaries of the hydrodynamic description as applied to relativistic heavy

ion collisions.

II. VISCOUS CORRECTIONS TO A BOOST INVARIANT EXPANSION

First consider a baryon free viscous boost invariant expansion with a vanishing bulk

viscosity, but a non-zero shear viscosity, η. Note throughout this work we denote the space-

time rapidity as ηs and the viscosity as η. Unlike for ideal hydrodynamics where entropy is

conserved, the entropy per unit space-time rapidity τs increases as a function of τ =
√

t2 − z2

[14, 15, 16, 17]
d(τs)

dτ
=

4
3
η

τT
. (2)

For hydrodynamics to be valid, the entropy produced over the time scale of the expansion

τ (to wit, τ
4
3
η

τT
) must be small compared to the the total entropy, (τs). This leads to the

requirement that
Γs

τ
≪ 1 , (3)

where we have defined the sound attenuation length

Γs ≡
4
3
η

sT
. (4)

Γs is approximately the mean free path and therefore the condition Γs/τ ≪ 1 is just the

statement that the mean free path be small compared to the system size. The name “sound

attenuation length” follows from the dispersion relation for a sound pulse ω = csk+ 1
2
i Γs k2,

where c2
s =

(

∂p
∂e

)

is the squared speed of sound. In the remainder of this section, I gather

estimates for Γs in the Quark Gluon Plasma (QGP). For similar estimates in the hadron gas

see [18].

The shear viscosity has been determined in the perturbative QGP only to leading log

accuracy [19, 20]. To leading log(g−1) the shear viscosity with two light flavor is given by

η = 86.473 1
g4

T 3

log(g−1)
. With the entropy of the QGP, s = 37 π2

15
T 3 and setting αs → 1

2
and
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log(g−1) → 1 the sound attenuation length in perturbation theory is
(

Γs

τ

)

Pert.

= 0.18
1

τT
. (5)

Estimates of evolution time scales give τT ∼ 1. The value of Γs/τ is sensitive to the value

of αs.

This perturbative estimate of Γs is clearly uncertain and assumes that αs ≈ 1/2 and

that log(g−1) is a large number. Recently the shear viscosity was evaluated in a strongly

coupled gauge theory, N = 4 SUSY YM using the AdS/CFT correspondence [7]. The shear

viscosity is given by η = π
8
N2

c T 3 [7] and the entropy is given by s = π2

2
N2

c T 3 [21]. Thus in

this strongly coupled field theory Γs is
(

Γs

τ

)

AdS/CFT

=
1

3πτT
. (6)

which is 2-4 times smaller than the corresponding perturbative estimate depending.

Finally, I compare these theoretical estimates of Γs to the value abstracted from Monte

Carlo simulations of RHIC collisions performed by Gyulassy and Molnar (GM) [6]. GM

modeled the heavy ion reaction as a gas of massless classical particles suffering only 2 → 2

elastic collisions with a constant cross section in the c.m.s frame, dσ
dΩ

= σ0

4π
. When particle

number is conserved, Γs is given by a more complicated formula which reflects the coupling

between the energy and number densities [22]

Γs =
4
3
η

e + p
+

κ

e + p

(

∂e

∂T

)−1

n

[

e + p − 2T

(

∂p

∂T

)

n

+ c2
sT

(

∂e

∂T

)

n

− n

c2
s

(

∂p

∂n

)

T

]

, (7)

where κ is the thermal conductivity. For the GM gas, c2
s = 1

3
, p = 1

3
e = nT and Γs reduces

to
4
3
η

e+p
as before. The shear viscosity in the GM gas is η ≈ 1.264 T

σ0
[23]. Therefore Γs is

directly proportional to the mean free path

Γs = 0.421
1

nσ0
. (8)

In order to achieve a reasonable agreement with the measured elliptic flow, GM required a

transport opacity of χ ≈ 20÷40. This transport opacity was reached when the cross section

was σ0 ≈ 10÷20 mb and the number of particles was dN
dη

≈ 1000 at proper time τo = 0.1 fm.

The initial density of particles is n = dN
dη

/(τoπR2). Substituting R ≈ 5.5 fm we obtain

(

Γs

τ

)

GM

= 0.02 ÷ 0.04 . (9)

4



This is smaller by a factor of three or more than even the AdS/CFT estimate assuming that

τT ∼ 1. The physical mechanism for such a small viscosity remains unclear.

The sound attenuation length is uncertain. In what follows we take Γs

τ
= 1

5
and calculate

viscous corrections to the observed spectra, elliptic flow, and HBT radii. In summary,

perturbation theory finds Γs/τ ≈ 0.18, strongly coupled supersymmetric field theory finds

Γs/τ ≈ 0.11, and phenomenology finds Γs/τ ≈ 0.03.

III. VISCOUS CORRECTIONS TO THE DISTRIBUTION FUNCTION

Viscosity modifies the thermal distribution function. The formal procedure for deter-

mining the viscous corrections to the thermal distribution function is given in the refer-

ences [19, 24]. In general, for a multi-component gas the viscous correction is different for

each component. For simplicity, we will consider a single component gas of “pions” with

mπ = 140 MeV. The basic form of the viscous correction can be intuited without calculation.

First write f(p) = fo + δf , where fo(
p·u
T

) = 1
ep·u/T−1

is the equilibrium thermal distribution

function and δf is the first viscous correction. δf is linearly proportional to the spatial gradi-

ents in the system. Spatial gradients which have no time derivatives in the rest frame and are

therefore formed with the differential operator ∇µ = (gµν −uµuν)∂
ν . For a baryon free fluid,

these gradients are ∇αT , ∇αuα, and 〈∇αuβ〉, where 〈∇αuβ〉 ≡ ∇αuβ + ∇βuα − 2
3
∆αβ∇γu

γ.

∇αT can be converted into spatial derivatives ∇αuβ using the ideal equations of motion and

the condition that T µνuν = euµ [24]. ∇αuα leads ultimately to a bulk viscosity and will be

neglected in what follows. Finally, 〈∇αuβ〉 leads to a shear viscosity. If δf/fo is restricted

to be a polynomial of degree less than three in pµ, then the functional form of the viscous

correction is completely determined,

f = fo (1 +
C

2T 3
pαpβ 〈∇αuβ〉) . (10)

For a Boltzmann gas this is the form of the viscous correction adopted in this work. The

factor of 2 in C
2T 3 is inserted for later convenience. For Bose and Fermi gasses the ideal

distribution function in Eq. 10 is replaced with fo(1 ± fo) [19]. The correction described

here is precisely the “first approximation” of reference [24] and the “one parameter ansatz”

for a variational solution of reference [19]. The “one parameter ansatz” reproduces the full

result to the 15% level.
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The coefficient C in Eq. 10 can be reexpressed in terms of the sound attenuation length.

Indeed, substituting f to determine the stress energy tensor

T µν = T µν
o + η 〈∇µuν〉 =

∫

d3p

(2π)3E
pµpνf , (11)

we find

η 〈∇µuν〉 =
C

2T 3

[
∫

d3p

(2π)3E
pµpνpαpβfo(1 + fo)

]

〈∇αuβ〉 . (12)

The quantity in square brackets is a fourth rank symmetric tensor and consequently can be

written in terms of ∆µν ≡ gµν − uµuν and uµ. Thus,

C

2T 3

∫

d3p

(2π)3E
pµpνpαpβfo(1 + fo) = ao

(

uµuνuαuβ
)

+ a1

(

∆µνuαuβ + permutations
)

(13)

+a2

(

∆µν∆αβ + ∆µα∆νβ + ∆µβ∆να
)

.

Substituting Eq. 13 into Eq. 12 and using the identities uα 〈∇αuβ〉 = uβ 〈∇αuβ〉 =

∆αβ 〈∇αuβ〉 = 0, we find 2a2 = η. To determine the coefficient a2, contract both sides

of Eq. 13 with
1

45

(

∆µν∆αβ + ∆µα∆νβ + ∆µβ∆να
)

, (14)

and evaluate the resulting expression in the local rest frame. The result for the viscosity is

η =
6

90

C

T 3

∫

d3p

(2π)3E
fo(1 + fo) |p|4 . (15)

For a Boltzmann gas fo(1 + fo) is be replaced with fo(
p·u
T

) = e−
p·u
T and the integrals can

be performed analytically. Comparing the resulting expression to the entropy of an ideal

Boltzmann gas (see e.g. [25]) we find C = η
s
. For a massless Bose gas the integrals can again

be performed analytically and C = π4

90ζ(5)
η
s
≈ 1.04η

s
. For a massive Bose gas, the integral

was performed numerically and C varies monotonously between these two limiting cases.

Therefore up to a few percent, we have C = η
s
, and the viscous correction δf is

δf =
3

8

Γs

T 2
fo(1 + f0) pαpβ 〈∇αuβ〉 .

IV. VISCOUS CORRECTIONS TO A BJORKEN EXPANSION

Before considering the viscous corrections to more general hydrodynamic expansions, let

us consider a simple Bjorken expansion of infinitely large nuclei without transverse flow. At
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mid space-time rapidity the stress energy tensor is at time τo is given by [17]

T µν
o + η 〈∇µuν〉 =















t x y z

t e 0 0 0

x 0 p + 2
3

η
τo

0 0

y 0 0 p + 2
3

η
τo

0

z 0 0 0 p − 4
3

η
τo















, (16)

where, T µν
o denotes the ideal stress energy tensor diag(e, p, p, p), Thus, the longitudinal

pressure is reduced by the expansion, T zz = p− 4
3

η
τo

, while the transverse pressure is increased

by the expansion, T xx = p + 2
3

η
τo

.

The difference between the longitudinal and transverse pressures is reflected in the pT

spectrum of thermal distribution. Since the transverse pressure (T xx) is increased by 2
3

η
τo

, the

particles are pushed out to larger pT . Armed with the modified thermal distribution function,

the Cooper Frye formula [26] gives the thermal spectrum of particles in the transverse plane

at proper time τo

d2N

d2pT dy
=

1

(2π)3

∫

pµdΣµ f (17a)

d2N (0)

d2pT dy
+

d2N (1)

d2pT dy
=

1

(2π)3

∫

pµdΣµ fo + δf . (17b)

Here dΣµ is the oriented space-time volume. Substituting into Eq. 17 (see Appendix B) we

obtain the the ratio between the viscous correction (δ dN ≡ dN(1)

d2pT dy
) and the ideal spectrum

(dN (0) ≡ dN(0)

d2pT dy
)

δ dN

dN (0)
=

Γs

4τo

{

(pT

T

)2

−
(mT

T

)2 1

2

(

K3(
mT

T
)

K1(
mT

T
)
− 1

)}

.

Using the asymptotic expansion for the modified Bessel functions, we have for large trans-

verse momenta,

δ dN

dN (0)
=

Γs

4τo

(pT

T

)2

. (18)

As promised, the larger transverse pressure drives pushes the corrected spectrum out to

higher transverse momenta. For a Bjorken expansion without transverse flow, this formula

also indicates at what transverse momentum the hydrodynamic description of pT spectra is

applicable. For Γs

τo
≈ 1

5
, and T = 200 MeV the ratio between the ideal spectrum and the
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FIG. 1: (a) The pz distribution of particles with coordinate-space rapidity ηs = 0, with and without

viscous corrections. (b) The z distribution of particles with momentum-space rapidity y = 0, with

and without viscous corrections. The curves are drawn for a Bjorken expansion without transverse

flow at τo = 7 fm for a Boltzmann gas with temperature, T = 160MeV, m = 140MeV. The

transverse momentum is fixed, pT = 400MeV. The viscous correction is linearly proportional to

Γs/τo.

correction becomes of order one for pmax
T ≈ 800 MeV. We shall see in the next section that

this upper bound on the domain of hydrodynamics is significantly larger pmax
T ≈ 1.5 GeV

once the transverse expansion is included in the flow profile.

We have already noted that the longitudinal pressure is reduced by the expansion, T zz =

p − 4
3

η
τ
. The reduction in the longitudinal pressure is ultimately responsible for a reduction

in the longitudinal radius measured by Hanbury-Brown Twiss interferometry. Since the

longitudinal pressure is reduced due to the expansion, the distribution in pz at mid space-

time rapidity (ηs = 0) is narrower. This is illustrated in Fig. 1(a) for a fixed transverse

momentum pT = 400 MeV. Due to boost invariance the pz distribution at ηs = 0 is directly

related to the z distribution at y = 0 [16]. Specifically, for fixed transverse momentum, dN
dydηs

is a function of |y − ηs|, which leads to the relation

mT
dN

dpzdη

∣

∣

∣

∣

η=0

= τo
dN

dydz

∣

∣

∣

∣

y=0

. (19)
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It follows that the z distribution at mid momentum-space rapidity is narrower as indicated

in Fig. 1(b). The width of this z-distribution, is related to the longitudinal radius that is

measured by HBT interferometry (see e.g. [27]).

To understand this result analytically we must calculate the width of z distribution for

a simple Bjorken expansion of a Boltzmann gas at proper time τo. Let us quickly recall

the definitions of the HBT radii. The source function S(x, K) for on shell pion emission is

defined such that

EK
d3N

d3K
≡
∫

d4xS(x, K) (20)

where EK = K0 =
√

K2 + m2
π. Averages with respect to the source function are defined as

〈α〉
K
≡
∫

d4xα S(x, K)/
∫

d4xS(x, K). To a good approximation (see e.g. Ref [27]), certain

spatial and temporal variances of the source function can be determined from the Bose-

Einstein correlations between pion pairs at small relative momenta. For a boost invariant

and rotationally invariant source, we can assume without loss of generality that the pair

momentum points in the x direction (i.e. K = (Kx, Ky, Kz) = (KT , 0, 0)). Then the

following variances can be determined from HBT measurements

R2
O(KT ) ≡

〈

(x̃ − vK t̃)2
〉

KT
(21)

R2
S(KT ) ≡

〈

ỹ2
〉

KT
(22)

R2
L(KT ) ≡

〈

z̃2
〉

KT
, (23)

where vK = KT /EK and for example x̃ ≡ x − 〈x〉. Comparing Eq. 18 and Eq. 20, we see

that in this work the source function is confined to a freezeout surface and therefore the

averages are understood to mean

〈α〉
K
≡
∫

Σ
Kµ dΣµ α f(x, K)

∫

Σ
Kµ dΣµ f(x, K)

. (24)

The assumption of a sharp freezeout surface is clearly unrealistic. In general there is a

transition region from hydrodynamics to the Knudsen limit. Within ideal hydrodynamics

this transition region can not be determined. Within viscous hydrodynamics, viscous terms

become large (∼ 1/2) and signal the transition.

Armed with these formula, the computation of R2
L for a boost invariant expansion is

straight forward. We have

R2
L(KT ) ≡

〈

z̃2
〉

KT
≡
∫

KµdΣµ f(x, K) z2

∫

KµdΣµ f(x, K)
. (25)

9



Substituting f = fo + δf , expanding to first order in δf , and performing the integrals (see

Appendix B) we find the viscous correction δR2
L

δR2
L

(R2
L)(0)

= −Γs

τo

[

6

4

mT

T

K3(
mT

T
)

K2(
mT

T
)
−
(mT

T

)2 1

8

(

K3(
mT

T
)

K2(
mT

T
)
− 1

)]

, (26)

where the (R2
L)(0) is the ideal longitudinal radius [28]

(R2
L)(0) = τ 2

o

T

mT

K2(x)

K1(x)
. (27)

For the relevant range of mT

T
, the Bessel function expression in square brackets is large ≈ 6−8.

Accordingly, viscous corrections to the longitudinal radius are quite large (> 100%) and tend

to reduce the radius relative to its ideal value. Including the transverse expansion reduces

the viscous correction to 50% . Nevertheless, the viscous correction to the longitudinal

radius remains large unless Γs/τo is significantly smaller than 0.1 . This formula and some

caveats are discussed further in the next section.

V. VISCOUS CORRECTIONS WITH TRANSVERSE EXPANSION

To go further and illustrate the effect of viscosity on the observed spectra, elliptic flow

and HBT radii of hydrodynamical models of the heavy ion collision, I generalize the blast

wave model to include the viscous corrections of Eq. 10. The blast wave model provides of

a simple parametrization of the flow of full ideal hydrodynamic simulations which assume

boost invariance [8, 9]. The corrections described below are therefore indicative of similar

corrections to these simulations. This is the reason for adopting the blast wave model here.

The blast wave model also has been used to fit experimental data. The model provides

a good description of spectra and elliptic flow [2, 9, 29] and provides a fair description of

HBT radii for small MT , MT < 0.5 GeV [30]. However, for larger MT the model does not

reproduce the strong dependence on MT seen in the RO and RS radii [29, 31]. The blast

wave model remains simply a model of the flow fields and ultimately a full viscous simulation

is needed to estimate viscous effects.

In the blast wave model of central collisions considered here, a hot pion gas is expanding

in a boost invariant fashion and freezes out at a proper time τo. In the transverse plane,

the temperature is constant To = 160 MeV and the matter distribution is uniform up to a

radius Ro. The transverse velocity rises linearly as a function of the radius, ur = uo r
RO

.
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Central (0-5%) Non-central (16-24%)

To (MeV) 160 160

Ro (fm) 10 7.5

τo (fm) 7.0 5.25

uo 0.55 0.55

u2 0 0.1

TABLE I: Table of parameters used in the blast wave model described in the text.

Summarizing, the hydrodynamic fields (T and uµ) are parameterized as

T (τo, ηs, r, φ) = To Θ(Ro − r) (28a)

ur(τo, ηs, r, φ) = uo
r

Ro

Θ(Ro − r) (28b)

uφ = 0 (28c)

uη = 0 (28d)

uτo =
√

1 + (ur)2 . (28e)

The blast wave parameters are adjusted so that model with the ideal thermal distribution

can approximately reproduce the spectra and HBT radii. Similar blast wave model fits

have appeared ubiquitously in the heavy ion literature (see e.g. [29]). Then with the model

parameters fixed, the viscous correction is calculated and compared to the ideal results. The

model parameters for central collisions are recorded in Table I.

With the hydrodynamic fields specified, the viscous tensor
〈

∇αuβ
〉

can be computed in

a simple but lengthy calculation which is worked out in Appendix A. One technical point

should be noted. In the viscous tensor
〈

∇αuβ
〉

time derivatives of the velocity appear. These

time derivatives are converted into spatial derivatives using the ideal equations of motion

which are sufficient to leading order in the viscosity.

The spectrum of particles emerging from the freezeout oriented 3-volume is calculated

by employing the Cooper-Frye formula, Eq. 17. These integrals are performed numerically

in a straightforward fashion. Again relevant details are relegated to Appendix A. The ideal

spectrum of this blast wave model is typical of blast and is in rough agreement with pion

data at RHIC. (See e.g. [29] for fits to data of this type.) In Fig. 2, the solid line shows

the ratio of the viscous correction to the ideal spectrum. The dashed line shows the Bjorken
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FIG. 2: The solid line shows the ratio between the viscous correction (δ dN ≡ dN(1)

d2pT dy ) and the

ideal spectrum (dN (0) ≡ dN(0)

d2pT dy
). The dashed line shows the Bjorken result without transverse flow

given in Eq. 18. The band indicates where the hydrodynamic description of the pT spectrum in the

blast wave model can not be reliably calculated. The viscous correction is linearly proportional to

Γs/τo.

result (Eq. 18) without transverse flow. The viscous correction becomes comparable to

ideal results for pT ≈ 1.7 GeV indicating the breakdown of the hydrodynamic description

of pT spectra for the flow profile considered here. Setting Γs/τo to 0.1 extends the domain

of applicability to 2.3 GeV. The analytic Bjorken result (Eq. 18) qualitatively explains the

shape of Fig. 2. Quantitatively however, the transverse expansion alleviates some of the

longitudinal shear and pushes the region of applicability hydrodynamics to somewhat larger

transverse momentum.

Indeed, viscous effects are implicated in the heavy ion data for pT ≈ 1.5 GeV. The

observed elliptic flow deviates from ideal hydrodynamic results for pT ≈ 1.5 GeV. Further

for pT ≈ 1.5 GeV, the single particle spectra start to deviate strongly from the hydrodynamic

results (see e.g. [8]). Viscosity provides a simple explanation for the observed breakdown of

the pT spectrum in this momentum range.

Next we examine the effect of viscosity on elliptic flow. In non-central collisions the radial
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velocity is given a small elliptic component to reproduce the observed elliptic flow

ur(τo, ηs, r, φ) = uo
r

Ro
(1 + u2 cos(2φ)) Θ(Ro − r) . (29)

The functional form of all other hydrodynamic fields is kept the same. Here we simulate the

STAR 16-24% centrality bin which corresponds to an impact parameter bin 〈b〉 ≈ 6.8 fm

[3]. In the model, the radius and lifetime parameters (Ro and τo) are scaled downward from

the central values by the ratio of the r.m.s. radii between b = 6.8 fm and central AuAu

collisions. This scaling of Ro and τo approximates the impact parameter dependence of ideal

hydrodynamic solutions [8]. The non-central parameters are recorded in Table I. As before,

once the flow fields are specified, the viscous correction is found by differentiating
〈

∇αuβ
〉

.

The full form of the correction is given in Appendix A.

The elliptic flow as a function of transverse momentum v2(pT ) is defined by Eq. 1. Ex-

panding to first order

v2(pT ) = v
(0)
2 (pT )

(

1 −
∫

dφ d2N(1)

pT dpT dφ
∫

dφ d2N(0)

pT dpT dφ

)

+

∫

dφ cos(2φ) d2N(1)

pT dpT dφ
∫

dφ d2N(0)

pT dpT dφ

, (30)

where v
(0)
2 (pT ) denotes the elliptic flow as a function of pT calculated as in Eq. 1 but with

the ideal distribution dN(0)

pT dpT dφ
.

Fig. 3 shows the elliptic flow for pions. By construction, the ideal curve v
(0)
2 roughly

reproduces the experimental elliptic flow at b ≈ 6.8 fm. Taking a more realistic flow profile

would improve the agreement of the ideal results with data [9]. The effect of viscosity is to

reduce the elliptic flow. Similar results were recently found [32] by considering a partially

thermalised expansion. Taken at face value these results suggest that the viscosity is small.

Indeed, in order to agree with the ideal results up to pT ≈ 1.0 GeV we require Γs/τo
<∼ 0.1 . It

must be mentioned that the results of Fig. 3 are sensitive to the blast wave parameters. Ideal

hydrodynamics generates an appropriate set of parameters. Whether a viscous expansion

(with Γs/τo = 0.1) can reproduce the observed a elliptic flow remains an open question.

Finally, I discuss how viscosity effects HBT radii. First, I illustrate the ideal HBT radii

for the blast wave parametrization in Fig. 4(a) The model parameters are again to chosen to

approximately reproduce the observed radii which are illustrated in Fig. 4(b) for comparison.

The viscous correction to each radius is again found by substituting f = fo + δf into Eq. 24

and expanding the numerator and denominator to first order in δf and calculating the
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integrals numerically. The resulting viscous corrections are illustrated in Fig. 5. Several

observations are immediate. First, as discussed in Sect. IV, the viscous corrections in the

longitudinal directions reduce 〈z̃2〉 and 〈t̃2〉 due to the reduction of longitudinal pressure.

This reduces the RO and RL radii. From a phenomenological point of view the reduction

of RL is welcome In full ideal hydrodynamic simulations of heavy ion collisions assuming

boost invariance in the longitudinal direction [10, 33], RL is approximately twice too large

compared to the data. In the blast wave model, viscous corrections to RL are large. This

suggests that viscosity is responsible for the shortcomings in these simulations. Comparing

Fig. 4(b) and Fig. 5(b), it seems that the reduction to RL is too large. However, it should be

remembered that the parameters of the blast wave model have been adjusted to reproduce

the ideal results and therefore viscous corrections make the agreement with data worse.

Further, because the correction to the longitudinal radius is large the calculation can not be

considered reliable. For Γs/τo ≈ 0.1 the viscous correction to RL is approximately 30− 50%

and the calculation is more reliable.

Viscous corrections to the transverse variances 〈x̃2〉 and 〈ỹ2〉 are small. Consequently, the

sideward radius receives only a small viscous correction. Viscosity introduces no significant
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x − t correlation which could influence the ratio of RO to RS . In the blast wave model the

difference between RO and RS is due to the contribution 〈t̃2〉. Viscous corrections to 〈t̃2〉
are negative and are essentially linearly proportional to this variance. For the particular

value of Γs/τo = 1/5 the viscous correction is accidentally correct and makes RO/RS ≈ 1 as

illustrated in Fig. 5(b). The agreement is accidental but the trend is completely general.

Viscosity reduces the 〈t̃2〉 and therefore tends to make RO equal to RS. This is also welcome

from a phenomenological point of view. Full ideal hydrodynamic simulations (with [10, 33]

and without [34] the assumption of boost invariance) predict RO/RS ≈ 1.3 which should be

compared to ∼ 0.9 observed in the RHIC data.

In spite of these welcome corrections, including viscosity makes some aspects of the

hydrodynamic description of HBT radii worse. All of the observed radii (denoted generically

as RX) scale quite accurately with mT =
√

K2
T + m2 as

RX ∝ 1√
mT

. (31)

Ideal hydrodynamics readily predicts this 1
√

mT
scaling (see e.g. [35, 36, 37]). Indeed, ex-

panding Eq. 27 for the longitudinal radius of an ideal boost invariant expansion, we obtain

the Sinyukov-Makhlin formula [35]

(R2
L)(0) = τ 2

o

T

mT

. (32)

Viscous terms immediately break this 1
√

mT
scaling. Expanding Eq. 26 for the longitudinal

radius with viscous corrections, we obtain

(R2
L)(0) + δR2

L = τ 2
o

(

T

mT

− 19

16

Γs

τo

)

. (33)

Viscous terms break the ideal 1
√

mT
scaling and this correction grows like mT

T
relative to the

ideal result. This deviation from 1
√

mT
scaling is not seen in the data.

There remain several puzzling aspects in the HBT measurements for which viscosity offers

no explanation. All of the radii are the same order of magnitude and fall with mT as in

Eq. 31. In particular the steep fall with mT in the sideward radius was difficult to reproduce

with the viscous blast wave model described here and in the ideal blast wave model [29]. This

behavior was predicted based upon a parametrization of ideal hydrodynamics [36, 37] where

system cools rapidly during freezeout and where temperature and velocity gradients are much

larger than the geometric size of the system. It is natural to ask whether these conditions can
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be dynamically generated from some initial conditions or freezeout dynamics – see [38] for

efforts in this direction. Large velocity gradients and temperature inhomogeneities should

increase the relative importance of viscosity. Nevertheless, the success of these models should

be noted.

VI. CONCLUSIONS

In conclusion, I have calculated the first correction to the thermal distribution function of

an expanding gas due to shear viscosity. The momentum range which is accurately described

by hydrodynamics is directly related to the shear viscosity and depends upon the particular

observable. I have estimated this momentum range for single particle spectra, elliptic flow,

and HBT radii using the boost invariant blast wave model.

For reasonable values of Γs ≡ 4
3

η
e+p

, the viscous correction to the single particle spectrum

of a blast wave model becomes of order one for pT ≈ 1.5 − 2.0 GeV as illustrated Fig. 2.

The observed elliptic flow places a constraint on the shear viscosity. Indeed, unless Γs/τo

is less than 0.1, v2 as a function of pT falls well below the ideal curve by pT ≈ 1.0 GeV. For

the blast wave model, the viscous corrections to elliptic observables become large before the

corresponding corrections to the transverse momentum spectra.

Shear viscosity also plays an important role in the interpretation of the longitudinal

radius. Indeed, RL reflects not only the lifetime of the system but also the degree of ther-

malization in the longitudinal direction. RL involves the second moment of the thermal

distribution function in the longitudinal direction where non-equilibrium effects are the

largest. Consequently, viscous corrections to this radius (approximately 50% for Γs/τo ≈ 0.2

and 25% for Γs/τo ≈ 0.1 .) are large enough that perhaps RL should be left out of hydrody-

namic fits to heavy ion data. This does not imply that hydrodynamics must be abandoned.

On the contrary, while thermodynamics might accurately describe 〈pT 〉, it certainly does

not accurately describe 〈p100
T 〉 unless the viscosity is very small. In addition, viscous cor-

rections to the ideal longitudinal radius seem to contradict measurements of RL. Shear

corrections cause the longitudinal radius to deviate from the 1
√

mT
scaling clearly seen in the

data [29, 30, 31] and expected in ideal hydrodynamics [35].

Shear viscosity also reduces the ratio of RO to RS by decreasing the emission duration

〈t̃〉. Nevertheless, viscosity is not a panacea for the HBT problem. The sideward radius
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falls precipitously as a function of KT . This precipitous fall can not be reproduced by

hydrodynamics at least with a boost invariant expansion [39]. Viscous corrections to Rside

are small and make the sideward radius increase with KT .

Many of the conclusions in this work about HBT radii were recently reached “from the

opposite end” by Gyulassy and Molnar (GM) [40] using kinetic theory. GM, started from

the Knudsen limit, increased the transport opacity and increased the longitudinal radius.

Here, I started from the ideal hydrodynamics, increased the viscosity and reduced of the

longitudinal radius. These authors also emphasized the importance of the y− ηs correlation

in determining RL. They also found only small viscous corrections to Rs and experienced

similar difficulties in reproducing the steep fall in KT .

Clearly performing a full viscous calculation is the next step towards a complete ther-

modynamic description of the heavy ion reaction. Whether the shear viscosity can be made

small enough (Γs/τo
<∼ 0.1) in the early stages to reproduce the elliptic flow but still large

enough (Γs/τo ≈ 0.2) in the late stages to reproduce RL and RO/RS remains an open and

important dynamical question.
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APPENDIX A: THE VISCOUS TENSOR AND BLAST WAVE MODEL

To write down the viscous tensor 〈∇αuβ〉 it is most convenient to use Bjorken coordinates:

τ =
√

t2 − z2, ηs = 1
2
log
(

t+z
t−z

)

, r =
√

x2 + y2, and φ = atan (y/x). Note, we denote the

space-time rapidity with ηs and the viscous coefficient with η. However, we will drop the “s”

on raised and lowered space-time indices when confusion can not arise. In this coordinate

system the metric tensor is

gµν =















τ ηs r φ

τ 1 0 0 0

ηs 0 −τ 2 0 0

r 0 0 −1 0

φ 0 0 0 −r2















(A1)

The only non-vanishing Christoffel symbols are Γτ
ηη = τ, Γη

τη = 1
τ
, Γr

φφ = −r, Γφ
rφ = 1

r
.

Without particle number conservation, the hydrodynamic fields are T (τ, ηs, r, φ) and

uµ(r, ηs, r, φ), where µ = r, τ, ηs, φ. The velocity field satisfies uµuµ = 1 and therefore

only three components of uµ need to be specified. For boost invariant flow uη = 0. For rota-

tionally invariant flow uφ = 0. For non-rotationally invariant flow we shall leave uφ = 0 and

leave the temperature profile rotationally invariant. We assume boost invariance through-

out. By assumption, the particles freezeout at a proper time τo with a uniform distribution

in the transverse plane and a linearly rising flow profile. Thus, the hydrodynamic fields are
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parameterized as

T (τo, ηs, r, φ) = To Θ(Ro − r) (A2a)

ur(τo, ηs, r, φ) = uo
r

Ro

(1 + u2 cos(2φ)) Θ(Ro − r) (A2b)

uφ = 0 (A2c)

uη = 0 (A2d)

uτ =
√

1 + (ur)2 . (A2e)

For central collisions u2 is zero. It is useful to realize that τuη and ruφ are the velocities in

the η and φ directions respectively.

The viscous tensor is constructed with the differential operator ∇α = ∆αβdβ, where

∆αβ denotes the projector, gαβ − uαuβ, and dβ denotes the the covariant derivative, dβu
α =

∂βuα+Γα
µβuµ. With these definitions the viscous tensor is given by η 〈∇αuβ〉, where 〈∇αuβ〉 ≡

∇αuβ+∇βuα− 2
3
∆αβ∇γu

γ. Assuming boost invariance, the spatial components of the viscous

tensor are given by

r
〈

∇ruφ
〉

= −r∂ru
φ − 1

r
∂φur − rurDuφ − ruφDur − 2

3
r∆rφ 1√−g

∂µ(
√
−guµ) (A3a)

r2
〈

∇φuφ
〉

= −2∂φu
φ − 2

ur

r
− 2r2uφDuφ − 2

3
r2∆φφ 1√−g

∂µ(
√
−guµ) (A3b)

〈∇rur〉 = −2∂ru
r − 2urDur − 2

3
∆rr 1√−g

∂µ(
√
−guµ) (A3c)

τ 2 〈∇ηuη〉 = −2
uτ

τ
+

2

3

1√−g
∂µ(

√−guµ) (A3d)

〈∇ruη〉 =
〈

∇φuη
〉

= 0 . (A3e)

Here
√−g = τr, the expansion scalar is given by

1√−g
∂µ(

√−guµ) =
uτ

τ
+

ur

r
+ ∂φu

φ + ∂ru
r + ∂τu

τ , (A4)

and the time derivatives in the rest frame Duµ = uαdαuµ are given by

Dur = uτ∂τu
r + ur∂ru

r + uφ∂φu
r − r(uφ)2 (A5)

rDuφ = uτ∂τ (ru
φ) + ur∂r(ru

φ) + uφ∂φ(ru
φ) + uφur . (A6)

Once the spatial components of the viscous stress energy tensor are known the temporal

components are determined (numerically) from the relations,
〈

∇αuβ
〉

uβ = 0.
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In these equations the time derivatives, ∂τu
φ, ∂τu

r, and ∂τu
τ appear. To fix the value of

these time derivatives it is sufficient to consider the ideal equations of motion. Inclusion of

viscous terms would lead to previously neglected second order corrections in Γs

τ
. The ideal

equations of motion can be written

De = −(e + p)∇µu
µ (A7)

Duµ = +
∇µp

e + p
. (A8)

With these two equations for De and Dur, and the flow profile given in Eqs. A2, the time

derivatives can be determined

∂τu
φ = 0 (A9a)

∂τu
r =

c2
sv

1 − c2
sv

2

(

uτ

τ
+

ur

r
+ ∂ru

r + v2∂ru
r

)

− v∂ru
r (A9b)

∂τu
τ = v∂τu

r . (A9c)

Here v = ur/uτ is the radial velocity and c2
s = dp

de
denotes the squared speed of sound. c2

s

is very close to 1
3

for the pion gas considered and is found by differentiating the equation of

state for a single component massive classical ideal gas. See e.g. [25] for explicit formulas for

the pressure and energy density. With the necessary time derivatives, the full viscous tensor

can be found by substituting the flow profile given in Eq. A2 into Eq. A3 and differentiating.

The final formulas are lengthy and are not given. A check of the algebra is provided by the

trace relation, gµνT
µν
vis = 0.

An additional prescription for fixing the time derivative was tried. If the particles are

freezing out, then the particles are free streaming. Accordingly, we have Duµ = 0. This

amounts to dropping terms proportional to c2
s when computing Eq. A9. This change made

only a negligible change to final results. This is because the whole effect of the time derivative

is proportional to c2
sv

2 which is rather small in practice, c2
sv

2 ≈ 1
10

.

To finish computing the viscous correction pµpν〈∇µuν〉 we need to express pµ

and the integration measure pµdΣµ in the (τ, ηs, r, φ) coordinate system. For

a particle at point (τ, ηs, r, φ) with four momentum pµ = (E, px, py, pz) =
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(mT cosh y, pT cos φp, pT sin φp, mT sinh y) we have

pτ = mT cosh(y − ηs) (A10a)

τpη = mT sinh(y − ηs) (A10b)

pr = pT cos(φp − φ) (A10c)

rpφ = pT sin(φp − φ) . (A10d)

The oriented freezeout volume is dΣµ = (dΣτ , dΣr, dΣφ, dΣη) = (τdηs rdr dφ, 0, 0, 0) and the

integration measure is

pµdΣµ = mT cosh(y − ηs) τdηs rdr dφ . (A11)

With these formulas there is ample information to compute the viscous correction

pµpν〈∇µuν〉 and to perform the necessary Cooper-Frye integrals.

APPENDIX B: VISCOUS CORRECTIONS TO A BJORKEN EXPANSION

In this appendix I provide the details leading to the viscous corrections to the spectrum

and longitudinal radius (Eqs. 18 and 26) for a boost invariant expansion without transverse

flow. The spectrum is given by the Cooper-Frye formula, Eq. 17. First we compute the

ideal spectrum. For a boost invariant expansion without a transverse flow uτ = 1 and

uη = ur = uφ = 0. The thermal distribution for an expanding Boltzmann gas is fo

(

p·u
T

)

=

exp
(

−mT cosh(y−ηs)
T

)

. Then the Cooper-Frye integral gives the thermal spectrum from an

expanding cylinder

d2N (0)

d2pT dy
=

1

(2π)3

∫

pµdΣµ fo

(p · u
T

)

(B1)

Substituting the integration measure pµdΣµ we have

d2N (0)

d2pT dy
=

1

(2π)3

∫ Ro

0

r dr

∫ 2π

0

dφ

∫ ∞

−∞

τ dηs mT cosh(y − ηs) fo(
p · u
T

) . (B2)

Performing the integral we obtain the ideal thermal spectrum

d2N (0)

d2pT dy
= mT τo

πR2
o

(2π)3
2K1(x) . (B3)

Here K1(x) is the modified Bessel function evaluated at x ≡ mT

T
. Now we determine the

correction spectrum. For a pure boost invariant expansion the non-vanishing components

23



of viscous tensor 〈∇µuν〉 are from Eqs. A3

〈∇rur〉 =
2

3τ
(B4a)

r2
〈

∇φuφ
〉

=
2

3τ
(B4b)

τ 2 〈∇ηuη〉 = − 4

3τ
. (B4c)

Thus the viscous correction δf is

δf =
3

8

Γs

T 2
fo

(p · u
T

)

pµpν 〈∇µuν〉 =
3

8

Γs

T 2
fo

(p · u
T

)

(

2 p2
T

3τ
− 4m2

T

3τ
sinh2 ηs

)

(B5)

Note we have substituted fo(1 + fo) in Eq. 16 by fo as required by the Boltzmann approxi-

mation. We can then substitute δf to determine the first viscous correction

d2N (1)

d2pT dy
=

1

(2π)3

∫

pµdΣµδf . (B6)

Substituting the integration measure and performing the integral over the ηs as for the ideal

case we obtain

d2N (1)

d2pT dy
= mT τo

πR2
o

(2π)3
2K1(x)

Γs

4τ

(

(pT

T

)2

−
(mT

T

)2
(

K3(x)

K1(x)
− 1

))

. (B7)

Dividing Eq. B7 with Eq. B3 we obtain Eq. 18 given the text.

Next we work out the first viscous correction to the longitudinal HBT radius. The

longitudinal radius is given by Eq. 25. Expanding to first order in δf and using the relation

z = τo sinh ηs we obtain the ideal contribution

(R2
L)(0)(KT ) =

∫

KµdΣµ fo(
K·u
T

) τ 2
o sinh2 ηs

∫

KµdΣµ fo(
K·u
T

) ,
(B8)

and the first viscous correction

δR2
L(KT ) = (R2

L)(0)

(

dN(1)

KT dKT

dN(0)

KT dKT

)

+

∫

KµdΣµ δfτ 2
o sinh2 ηs

∫

KµdΣµ fo(
K·u
T

)
. (B9)

For the kinematics of typical HBT measurements at mid rapidity, we have Kµ =

(Kτ , Kr, Kφ, Kη) = (
√

K2
T + m2, KT , 0, 0) . The integration measure is KµdΣµ =

mT cosh(ηs) τ dηs rdr dφ where mT =
√

K2
T + m2.

First we work out the ideal radius, (R2
L)(0). Substituting KµdΣµ into the numerator

and denominator and performing the integrals over the freezeout surface (as in Eq. B2) we

obtain the Herrmann-Bertsch formula [28]

(R2
L)(0) = τ 2

o

T

mT

K2(x)

K1(x)
, (B10)
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where x ≡
√

m2 + K2
T /T . For large values of x, Eq. B10 reduces to the Makhlin-Sinyukov

formula [35]

(R2
L)(0) = τ 2

o

T

mT
. (B11)

A similar calculation gives the viscous correction. Substituting the viscous correction δf

(Eq.B5) into Eq.B9, using the previous results for the spectrum (Eqs. B3, B7) and ideal

radius (Eq. B10), and performing the ηs integrals, we obtain Eq. 26 quoted in the text

δR2
L

(R2
L)(0)

= −Γs

τ

(

6

4

xK3(x)

K2(x)
− x2 1

8

(

K3(x)

K2(x)
− 1

))

. (B12)
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